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1 A geometric progression u
1
, u

2
, u

3
, à is defined by u

1
= 32 and u

n+1 = 0.75u
n
for n ≥ 1.

(i) Find u
5
. [2]

(ii) Find
∞Ð
n=1

u
n
. [2]

2 (i) Express 2x2 + 6x + 5 in the form p�x + q�2 + r. [3]

(ii) State the equation of the line of symmetry of the curve y = 2x2 + 6x + 5. [1]

(iii) Find the value of the constant k for which the line y = k − 2x is a tangent to the curve

y = 2x2 + 6x + 5. [3]

3 Solve the equation 62x−1 = 3x+2, giving your answer in the form x = ln a

ln b
where a and b are integers.

[5]

4 Solve the equation x + 2
�
x − 6 = 0, giving your answer in the form x = c + d

�
7 where c and d are

integers. [6]

5 The complex numbers u and v are given by u = 3 + 2i and v = 1 + 4i.

(i) Given that au2 + bv* = 7 + 36i find the values of the real constants a and b. [5]

(ii) Show the points representing u and v on an Argand diagram and hence sketch the locus given by

�z − u � = �z − v �. Find the point of intersection of this locus with the imaginary axis. [4]
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The diagram shows a sector AOB of a circle, centre O and radius r. Angle AOB is 1 radians. The

point C lies on OB, and AC is perpendicular to OB. The area of the triangle AOC is equal to the area

of the segment bounded by the chord AB and the arc AB.

(i) Show that 1 = sin 1�1 + cos1�. [4]

The equation 1 = sin 1�1 + cos1� has only one positive root.

(ii) Use an iterative process based on this equation to find the value of the root correct to 3 significant

figures. Use a starting value of 1 and show the result of each iteration. Use a change of sign to

verify that the value you have found is correct to 3 significant figures. [5]

7 A curve is given parametrically by x = t2 + 1, y = t3 − 2t where t is any real number.

(i) Show that the equation of the normal to the curve at the point where t = 2 can be written in the

form 2x + 5y = 30. [5]

(ii) Show that this normal does not meet the curve again. [5]

8 (i) Use integration by parts twice to show that

Ó ex sin x dx = 1
2
ex�sin x − cos x� + c. [6]

(ii) Hence find the equation of the curve which passes through the point �0, 2� and for which
dy

dx
= ex sin x. [2]

Questions 9 and 10 are printed on the next page.
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9 In this question, x denotes an angle measured in degrees.

(i) Express 4 sin�2x + 30Å� + 3 cos 2x in the form R cos�2x − !�, where R > 0 and 0Å < ! < 90Å. [4]

(ii) Give full details of the sequence of transformations which maps the graph of y = cos x onto the

graph of y = 4 sin�2x + 30Å� + 3 cos 2x. [4]

(iii) Find the smallest positive value of x that satisfies the equation 4 sin�2x + 30Å� + 3 cos 2x = 6. [4]

10 (i) By using the substitution u = 3 − 2x, or otherwise, show thatÔ 1

0

@
4x

3 − 2x

A2
dx = 16 − 12 ln 3.

[7]

(ii)

x

y

O

4

R

The diagram shows the region R, which is bounded by the curve y = 4x

3 − 2x
, the y-axis and the

line y = 4. Find the exact volume generated when the region R is rotated completely around the

x-axis. [3]
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